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Abstract. The range of validity of the Kramers escape rate for non-axially symmetric problems
of superparamagnetic relaxation as a function of friction is investigated. A comparison of the
exact smallest non-vanishing eigenvalue of the Fokker–Planck equation with the asymptotic
expressions for the Kramers escape rate in very low-damping and intermediate- to high-damping
regimes is made. It is demonstrated, by calculating the smallest non-vanishing eigenvalue for the
particular non-axially symmetric problem of a uniform magnetic field applied at an oblique angle
to the easy axis of a particle having simple uniaxial anisotropy, that the asymptotic formulae
provide an acceptable approximation in the ranges of damping for which they are expected to
be valid. The range of validity of the non-axially symmetric intermediate- to high-damping
formula as a function of the field angle (which is effectively a measure of the departure from
axial symmetry) is also investigated.

1. Introduction

The timeτ of the reversal, due to thermal agitation, of the magnetizationM of a single
domain ferromagnetic particle (superparamagnet) in the (generally) asymmetric multiwell
potential created by the magnetocrystalline anisotropy and an applied field has recently
assumed a new importance. This is in view of (a) its implications for the long term stability
[1, 2] of stored information and (b) the search [3] for the macroscopic quantum tunnelling
of M—a mechanism of magnetization reversal originally proposed by Bean and Livingston
[4]. Thus, it is imperative to have mathematically accurate asymptotic formulae for the
reversal time for magnetocrystalline anisotropy potentials which are non-axially symmetric
in relation to the anisotropy axis in order to achieve a reliable comparison of the theory with
experiment [3]. In particular, an accurate formula forτ allows one to deduce the values of
other experimental parameters, for example, the blocking temperature from measurements
of τ .
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The purpose of this paper is to assess the accuracy of various non-axially symmetric
asymptotic formulae based on Kramers theory [5] of escape of particles over potential
barriers, and to ascertain the range of friction in which a particular asymptotic formula is
valid by comparison with the exact numerical solution from the Fokker–Planck equation for
the particular non-axially symmetric problem of uniaxial anisotropy with a uniform field
applied at an oblique angle to the anisotropy axis. This is one of the few non-axially
symmetric problems for which accurate numerical solutions are available for relatively high
potential barrier heights where the asymptotic behaviour of the solution is precisely known.

The study of the reversal time, having been initiated by Néel [6] was refined by
Brown [7] who, by writing down the Langevin equation for the magnetization vectorM of
the particle assuminguniform rotation ofM and constructing from it the Fokker–Planck
equation (FPE) for the densityW of the magnetic moment orientations, showed how the
problem of relaxation of the magnetization could be set in the context of the general theory
of stochastic processes [1, 7–9]—with the time of reversalτ of M being essentially given
in the high-barrier limit by the reciprocal of the smallest non-vanishing eigenvalueλ1 of
the FPE as dictated by the theory of first passage times [9].

Brown in his original study [7] took as his starting point the Langevin equation (which
is the Gilbert equation [10] augmented by white noise terms)

Ṁ = g′MS(M ×H)+ h′(M ×H)×M (1)

where

g′ = γ

(1+ a2)MS

h′ = ag′

and

a = ηγMS (2)

is the dimensionless damping factor. In equations (1) and (2),γ is the gyromagnetic ratio,
MS is the (constant) magnitude ofM andη is aphenomenologicaldamping constant arising
from the heat bath. The total fieldH acting on a particle comprisesHapp the applied field,
HA the anisotropy field andh(t) the random white noise field due to thermal agitation of
the surroundings (heat bath).

Having written this Langevin equation Brown [7] was then able to construct, using
methods familiar in the theory of stochastic processes [7–9], the FPE for the densityW(p, φ)

of orientations ofM , namely

2τN
∂W

∂t
= ∂

∂p
(1− p2)

∂W

∂p
+ 1

1− p2

∂2W

∂φ2

+β ∂
∂p

{[
(1− p2)Hp + Hφ

a

]
W

}
+ β ∂

∂φ

[(
− Hp

a
+ Hφ

1− p2

)
W

]
(3)

which has the form of a continuity equation

∂W

∂t
= divJ = div(JD + Jd) = ∂

∂p

[
− ṗD(φ, p)W + 1

2τN
(1− p2)

∂W

∂p

]
+ ∂

∂φ

[
− φ̇D(φ, p)W + 1

2τN

1

1− p2

∂W

∂φ

]
(4)

whereJD is the drift current,Jd the diffusion current and the drift coefficients are given by
the Langevin equation, written in spherical polar coordinates without the noise terms, viz

ṗD = −h′(1− p2)Hp − g′Hφ (5)

φ̇D = g′Hp − h′(1− p2)−1Hφ. (6)
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In equation (3) the colatitudeϑ and the azimuthφ are the polar angles describing the
orientation ofM on a sphere of radiusMS , wherep = cosϑ

τN = βMS

2γ a
(1+ a2) = β

2h′
(7)

is the diffusional relaxation time, whereβ = ν/kT , ν is the volume of the single domain
particle,H(p, φ) is effectively the Hamiltonian of the system which is the Gibbs free energy

νH(p, φ) = νV (ϑ, φ) (8)

consisting of the anisotropy energy and the energy due to the impressed fieldHapp.
If equation (4) is rewritten in an obvious notation as

∂

∂t
W = 1

2τN
LFPW (9)

then the relaxation timeτ of the longest lived mode (describing the reversal ofM ) is

τ ≈ 2τN
λ1

(10)

whereλ1 is the smallest non-vanishing eigenvalue of the Fokker–Planck (FP) operatorLFP .

2. Asymptotic formula for axially symmetric problems

Brown [7] did not solveequation (9) rather he confined his discussion to anasymptotic
estimate for λ1 for axially symmetric bi-stable potentialsνV (ϑ) only, so that the
gyromagnetic terms (those ina−1) drop out of the FPE when one considers the longitudinal
relaxation. The transverse motion is then just a steady precession of the magnetic moment
so that there isno geometric couplingbetween the transverse and the longitudinal relaxation
modes. Brown proceeded by using [7, 9] an adaptation, to magnetization orientations
specified by the spherical polar coordinateϑ , of Kramers theory [5] of escape of particles
over potential barriers. (This originally pertained tomechanicalparticles with a single
degree of freedom diffusing in phase space(q, p) with q = position,p = momentum, with
additive noise and obeying the particular form of the FPE known [9] as the Klein–Kramers
equation that is, the FPE in(q, p) space.) Thus for an axially symmetric bi-stable potential
which has minima atϑ = (0, π) and a maximum atϑm

τ−1 ≈ λ1

2τN
≈ (ν12+ ν21) ≈ 1

2τN
sinϑm

[−βV ′′(ϑm)
2π

]1/2

(V ′′(0) exp{−β[V (ϑm)− V (0)]}
+V ′′(π) exp{−β[V (ϑm)− V (π)]}) (11)

whereν12, ν21 are Kramers escape rates (transition probabilities for positive orientation 1 to
negative orientation 2 andvice versa) on the escape paths(0, ϑm) and(π, ϑm).

Later the accuracy of the high-barrier asymptotic estimate was confirmed by Aharoni
[11, 12] for simple uniaxial anisotropy with a uniform fieldHapp parallel to the polar(k)
axis which is taken as the easy axis of magnetization so that

νV (ϑ)− νK sin2 ϑ − νHappMS cosϑ (12)

and so

τ−1 ≈ λ

2τN
≈ (2τN)−12π−1/2σ 3/2(1− h2)

×{(1+ h) exp[−σ(1+ h)2] + (1− h) exp[−σ(1− h)2]} (13)
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where, of course, the arguments of both exponentials (the barrier heights) greatly exceed
unity. Here

σ = βK ξ = βMSHapp h = ξ/2σ (14)

are the anisotropy and field parameters, respectively. The bi-stable structure of the potential
vanishes whenh reaches its critical value of unity so that Néel relaxation no longer takes
place.

We remark that the concept of multiplicative noise does not concern us yet as a
one-dimensionalproblem with multiplicative noise may always be converted into a one-
dimensional problem withadditive noise [9]. We also remark thatλ1 in this problem is
independent of the damping factora.

3. Asymptotic formulae for non-axially symmetric problems

The axially symmetric asymptote forλ1, equation (11), is by definition very restrictive,
for example, for a uniform applied field, it may be used only if the field is parallel to
the easy axis and there is uniaxial anisotropy. Moreover, it cannot be applied to higher
order anisotropies such as cubic which are inherently non-axially symmetric. Another
restriction of equation (11) is that because it arises from asingle variable (p = cosϑ)
FPE it is valid for all values of the damping factora—since a only appears in the
diffusional time τN ; thus, there isno geometric couplingbetween the transverse and
longitudinal modes of the magnetization. This is not generally true becausetwo reaction
coordinates [13](p, φ), ensuring coupling, and multiplicative noises [1, 9, 13] are involved
and just as in the conventional Kramers theory [5] of escape of particles over potential
barriers (for a mechanical system with a single reaction coordinate governed by the Klein–
Kramers equation) the range of values of the damping factora for which a particular
escape rate formula is valid must be taken into account [13]. We remark that the axially
symmetric formula equation (11) although superficially similar to the very high-damping
(Smoluchowski) limit of Kramers theory (derived from Kramers intermediate- to high-
damping (IHD) formula) has aradically different origin from the high-damping Kramers
formula as it arises fromsymmetry[13–15] not fromstrong dampingof the momentum as
in Kramers problem. In other words, the concept of a Smoluchowski equation is irrelevant
in the magnetic problem as that equation pertains to mechanical particles.

The first attempt to lift the restriction of axial symmetry was made by Smith and
de Rozario [16] who derived an asymptotic formula forλ1 for the particular case of cubic
anisotropy and later for a general non-axially symmetric potential by Brown [17] (reviewed
and derived in detail in Geogheganet al [18]). However, neither Smith and de Rozario
[16] nor Brown [17] in their formulae, which are analogous to the intermediate- to high-
damping (corresponding in the Kramers problem to aperiodic to overdamped behaviour in
the (inverted) harmonic oscillator potential approximation to the dynamics at the top of the
barrier) limit of Kramers theory [5], addressed the problem of the range of values ofa

for which their results are valid, so that their papers contain no reference to a very low-
damping (corresponding in the Kramers problem to the very lightly damped oscillations in
the well) formula analogous to that obtained by Kramers [5] for diffusion along the energy
coordinate, in a single degree of freedom mechanical system with additive noise governed
by the Klein–Kramers equation in phase space.

A low-damping formula for Kramers escape rate and so an asymptotic formula forλ1 in
the energy diffusion controlled [5, 13] limit was first derived by Klik and Gunther [14, 15],
who bypassed the original Kramers low-damping approach entirely, by suitably adapting
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the uniform expansion of the first passage time proposed by Matkowskyet al [19] for
the Klein–Kramers problem (in order to describe the crossover from the extremely weak
damping case, that is, energy controlled diffusion to the moderate- to high-damping case,
details in [13, 19]). This calculation led theminter alia to the concept of a range of values for
a for which a particular asymptotic formula is valid in the magnetic problem. Moreover,
they realised that the IHD asymptotic formula in the magnetic problem is in essence a
particular example of the multireaction coordinate Kramers problem with additive white
noise treated by Brinkman [20], Landauer and Swanson [21] and with the greatest degree of
generality by Langer [22], reviewed in depth by Hänggiet al [23] (their section IV F). The
calculations of Klik and Gunther and those of Brown [7, 17] have been reviewed by Coffey
[13] and Geogheganet al [18] so we shall merely sketch the details of the calculations
insofar as they are needed for the numerical comparison withλ1 from the FPE. Thus, in the
IHD calculation Brown [17, 18] supposes that the free energy per unit volumeV = V (r)
where

r = M

MS

has a bi-stable structure with minima atn1 andn2 separated by a potential barrier that
contains a saddle point atn0 where it is assumed thatni are coplanar. If one denotes the
plane containingni by 5 then for eachi = 0, 1, 2 one may define an orthogonal triad of
unit vectorsEi = (e(i)1 , e

(i)

2 , e
(i)

3 ) with e(i)1 ⊥ 5 ande(i)2 , e
(i)

3 ∈ 5 so that if

XTi = (α(i)1 , α
(i)

2 , α
(i)

3 ) (15)

denotes the coordinate vectors (direction cosines) ofr with respect toEi andr is close to
the stationary pointsni of the potential, thenr = EiXi andV (r) can be approximated to
the second order of the (supposed) small quantitiesα(i) by the Taylor series

V = Vi + 1
2[c(i)1 (α

(i)

1 )
2+ c(i)2 (α

(i)

2 )
2]. (16)

Now the FPE, equation (3), may be written

Ẇ = g′r · (3V ×3W)+ h′3 · (W3V )+ (2τN)−132W (17)

where3 means the two-dimensional gradient operator on the surface of the unit sphere.
Thus, equation (16) when substituted into equation (17) (details in [18]) yields alinearized
FPE—linear in the sense that the drift coefficients are linear in the direction cosinesα

(i)

1 , α
(i)

2 .
The linearized FPE (which is akin to that of an harmonic oscillator) may be solved exactly in
the vicinity of the saddle point, essentially in the same manner as described by Kramers [5]
for the linearized Klein–Kramers equation to yield, after a very lengthy calculation (which
is detailed fully in [18], section V) Brown’s result (equation (84) of [17] or equation (5.60)
of [18]), namely

τ−1 ≈ λ1

2τN
≈ �0

2πω0
{ω1 exp[−β(V0− V1)] + ω2 exp[−β(V0− V2)]} (18)

where

ω2
1 =

γ 2

M2
S

c
(1)
1 c

(1)
2 (19)

ω2
2 =

γ 2

M2
S

c
(2)
1 c

(2)
2 (20)

ω2
0 =
−γ 2

M2
S

c
(0)
1 c

(0)
2 (21)
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are the squares of the well and saddle angular frequencies, respectively, and the
(over) damped saddle angular frequency�0 associated with the hyperbolic paraboloid
(the corresponding quantity in the Kramers problem is an inverted oscillator potential)
approximation to the potential at the top of the barrier is

�0 = h′

2

[
−c(0)1 − c(0)2 +

√
(c
(0)
2 − c(0)1 )2− 4a−2c

(0)
1 c

(0)
2

]
(22)

and the damping factora is

a = h′

g′
=
[

γ

(1+ a2)MS

]−1
aγ

(1+ a2)MS

= ηγMS. (23)

In order that equation (18) should be valida must be large enough [5, 13] to ensure a
Maxwell–Boltzmann distribution of orientations as one moves away from the saddle point.
The derivation of equation (18) also requires the solution of the linearized FPE in the vicinity
of the minima which is the Maxwell–Boltzmann distribution. In writing equation (18) and
indeed equation (11) it is always supposed that the ratios of barrier height to thermal energy
become appreciable (i.e.β(V0 − Vi) � 1) so that one may assume that the density of
magnetic moment orientationsW rapidly achieves a state of quasi-equilibrium [7] thus the
FPE, equation (17), reduces to the master equation

ṅ1 = −ṅ2 = ν2,1n2− ν1,2n1

and

λ1 ≈ 2τN(ν1,2+ ν2,1)

whereνij is the transition probability from orientationi to orientationj , n1 is the number
of particles with a positive orientation andn2 those with a negative orientation in this case.

Equation (18) is clearly of the same form as the IHD formula derived by Kramers [5] in
the context of a mechanical problem obeying the Klein–Kramers equationconsequently it is
subject to the same limitations as that formula regarding the range of values of a for which
it is applicable. As we have stateda must be large enough to ensure a Maxwell–Boltzmann
distribution of orientations as one moves away from the saddle point or put in yet another
way; in one cycle of the motion of the orienting moments the energy dissipated must be
significantly greater than the thermal energy.

Equations essentially similar to Brown equations (18)–(22) were derived by Klik and
Gunther [13–15] by supposing that the saddle point and minima of the potential lie on
the equator. When the Fokker–Planck equation or equivalently the Langevin equation is
linearized at any point in the vicinity of the equator, the non-linear system withmultiplicative
noise so linearized behaves as a two reaction coordinate system withadditivenoise to which
the formalism of Langer [22, 23] may be directly applied with the angular frequencies being
given by the Hessian matrix of the energy at the stationary points [23].

We remark that [5, 23] the transition state theory result may be written by simply taking
the limit asa→ 0 in equation (18) so that [13] the saddle angular frequency is

�0 = ω0

and so

τ−1 ≈ 1

2π
{ω1 exp[−β(V0− V1)] + ω2 exp[−β(V0− V2)]} (24)

in which there is no longer any frictional dependence of the prefactor. Thus, one would
have Ńeel relaxation in the absence of damping which is impossible. Therefore, we require
a formula which reducesτ−1 to zero in the low-damping limit. This is accomplished by
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using the uniform expansion of the first passage time technique of Matkowskyet al [19]
(essentially used by them to treat the damping regime between the very low-damping region
where equation (25) (see later) applies and (roughly) the aperiodic damping region beyond
which equation (18) would be expected to apply) as adapted by Klik and Gunther [14, 15]
to the magnetic problem viz (details in [13])

τ−1 ≈ a

2π
{ω1β(V0− V1) exp[−β(V0− V1)] + ω2β(V0− V2) exp[−β(V0− V2)]} (25)

which is valid if the energy loss per cycle is significantly less than the thermal energy.

4. Range of validity of asymptotic formulae as a function of the damping parameter

In order to roughly establish the range of values ofa in which equations (18) and (25) are
valid one may apply the criterion of Kramers [5, 23], namely, the crossover region in which
neither IHD nor low-damping (LD) formulae hold, is given by

τ ≈ τT S. (26)

whereτ is given by equation (25) andτT S is given by thea = 0 limit of equation (18),
namely equation (24). This immediately leads [13] to an estimate of the range of validity
of equation (18), namely the friction parametera must satisfy the relations

aβ(V0− V1) > 1 aβ(V0− V2) > 1 (27)

with of course

β(V0− V1) > 1 β(V0− V2) > 1. (28)

In the low-damping limit, on the other hand, these criteria become

aβ(V0− V1) < 1 aβ(V0− V2) < 1 (29)

and, of course, equation (27) still applies.
We remark that as well as the situation described by equations (27)–(29), it is also

possible to have

aβ(V0− V1)� 1 (30)

with

β(V0− V1)� 1 (31)

and

aβ(V0− V2) < 1 (32)

with

β(V0− V2) > 1 (33)

corresponding to adeep lower minimum with barrier height given by equation (31) and a
relatively shallowupper minimum where the barrier height is given by equation (33). If
this situation arises then the IHD formula must be used to estimate the contribution toλ1

for transitions from the lower minimum while the LD formula must be used for transitions
from the upper minimum.

This discussion serves to underline an important feature of the various asymptotic
formulae forλ1: namely it is possible to identify from them theseparatecontributions
to λ1 from transitions between the upper and lower minimum andvice versa. This is not, in
general, possible if one constructs the exact solution by numerically calculating the smallest
non-vanishing eigenvalue ofLFP .
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Figure 1. Smallest non-vanishing eigenvalueλ as a function of relative orientationψ in degrees
for h = 0.1, a = 0.1, σ = 5. Here the low-damping (LD) asymptote, equation (25), provides
a much better approximation than the IHD formula equation (18) sinceaβ(V0 − V1) < 1,
aβ(V0 − V2) < 1 by inspection of table 2.

5. Comparison of IHD and LD formulae with the exact solution from the
Fokker–Planck equation

In order to test the validity criteria given earlier the approximate eigenvalue yielded by
equations (18) and (25) was compared with the eigenvalue yielded by the exact solution
of the FPE using the techniques described in Coffeyet al [24] for the particular case of
a uniform field applied at an oblique angle to the polar axis. Thus, the potential is of the
form

vV (ϑ) = Kv sin2 ϑ − vMSH(cosϑ cosψ + sinϑ cosφ sinψ) (34)

for which accurate [24] numerical solutions forλ1 of the FPE are available. Hereψ is the
colatitude of the field which is assumed to be applied in thex–z plane.

Calculation of the Taylor series expansion coefficientsc
(i)

1 , c
(i)

2 and the barrier heights
in the Brown IHD equation (our equation (18)) for this potential is very lengthy, since
it depends on finding the roots of a quartic equation. The mathematical details of the
calculation are comprehensively described in pp 601–28 of [18]—with the corresponding
method for the numerical calculation ofλ1 and the derivation of the differential-recurrence
relation being described in [18, 24] which is used to calculateλ1.

Thus, it is sufficient to remark here that the plane containing the relevant stationary
points lies in the longitudeφ = 0 and that at the minima the truncated Taylor series for
the potential (equation (16)) has the form [18] of an elliptic paraboloid while at the saddle
point it describes a hyperbolic paraboloid (which has the appearance of a horse’s saddle).
The calculations are somewhat easier in the situations where the LD formula applies, as all
that is required in the computation of this formula is the barrier height.
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Table 1. Values ofλE , λLD andλIHD for h = 0.1, a = 0.1, σ = 5.

ψ λE λLD λIHD

0 0.1786 0.1260 0.2282
15 0.1953 0.1515 0.4962
30 0.2313 0.1756 0.5417
45 0.2642 0.1959 0.5880
60 0.2878 0.2111 0.6171
75 0.2993 0.2235 0.6299
90 0.3025 0.2235 0.6330

Table 2. Barrier heights forh = 0.1, a = 0.1, σ = 5.

ψ β(V0 − V1) β(V0 − V2) aβ(V0 − V2)

0 6.05 4.05 0.405
15 5.7579 3.8267 0.3827
30 5.4170 3.6871 0.3687
45 5.0503 3.6396 0.3640
60 4.6834 3.6871 0.3687
75 4.3421 3.8269 0.3827
90 4.05 4.05 0.405

Table 3. Values ofλE , λLD andλIHD for h = 0.1, a = 1.0, σ = 10.

ψ λE λLD λIHD

0 0.008 60 0.0073 0.0099
15 0.008 67 0.0108 0.0088
30 0.008 679 0.0142 0.0086
45 0.008 286 0.0162 0.0084
60 0.007 425 0.0166 0.0076
75 0.006 504 0.0160 0.0067
90 0.006 107 0.0156 0.0063

The results of our numerical calculations and comparison with the asymptotic formulae
may be summarized as follows: in figure 1 and tables 1 and 2 we show the results for a
relatively small friction situation where the LD formula equation (25) may reasonably be
expected to apply: our conjecture appears to be valid here as the LD formula is a much
better approximation to the exactλ1 (denoted byλE) than the IHD one.

Figure 2 and tables 3 and 4 show further results for the opposite case in which the IHD
formula is expected to apply. The results confirm that the IHD formula is now the best.
Yet another set of results is shown in figure 3 and tables 5 and 6.

It is apparent from the above example where

aβ(V0− V2) ≈ 1.5 (35)

on average, that the IHD formula again provides a reasonable estimate ofλ1 even though
the criteria, equation (35), for validity of the IHD formula is near unity. Figure 4, on the
other hand, shows results when

aβ(V0− V2)

is of the order unity or slightly less.
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0.0 20.0 40.0 60.0 80.0
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0.025

λ
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Figure 2. Smallest non-vanishing eigenvalueλ as a function of relative orientationψ in degrees
for h = 0.1, a = 1, σ = 10. Here the IHD asymptote, equation (18), provides a much
better approximation than the LD formula, equation (25), since (table 4),aβ(V0 − V1) > 1,
aβ(V0 − V2) > 1, with the exception of small values ofψ as discussed in the text.

Table 4. Barrier heights forh = 0.1, a = 1.0, σ = 10.

ψ β(V0 − V1) β(V0 − V2) aβ(V0 − V2)

0 12.1 8.1 8.1
15 11.5159 7.6535 7.6535
30 10.8340 7.3743 7.3743
45 10.1005 7.2792 7.2792
60 9.3667 7.3743 7.3743
75 8.6841 7.6537 7.6537
90 8.1 8.1 8.1

Table 5. Values ofλE , λLD andλIHD for h = 0.1, a = 0.2, σ = 10.

ψ λE λLD λIHD

0 0.008 60 0.0073 0.0099
15 0.009 54 0.0108 0.0125
30 0.001 14 0.0142 0.0142
45 0.012 56 0.0162 0.0153
60 0.012 33 0.0166 0.0147
75 0.011 34 0.0160 0.0134
90 0.010 81 0.0156 0.0127

Here it is apparent that the LD formula provides on average a closer approximation to
the exact solution. The fact that both LD and IHD formulae yield a sensible approximation
to λ1 near the crossover region is substantially in accord with the discussion of Kramers [5]
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Figure 3. Smallest non-vanishing eigenvalueλ as a function of relative orientationψ in degrees
for h = 0.1, a = 0.2, σ = 10. Here both IHD and LD asymptotes provide a reasonable
approximation toλE since on inspection of table 6aβ(V0 − V1) is in the range 1 to 2 and the
IHD formula is marginally better.

Table 6. Barrier heights forh = 0.1, a = 0.2, σ = 10.

ψ β(V0 − V1) β(V0 − V2) aβ(V0 − V2)

0 12.1 8.1 1.62
15 11.5159 7.6535 1.53
30 10.8340 7.3743 1.475
45 10.101 7.2792 1.4558
60 9.3667 7.3743 1.475
75 8.6841 7.6537 1.53
90 8.1 8.1 1.62

Table 7. Values ofλE , λLD andλIHD for h = 0.2, a = 0.2, σ = 10.

ψ λE λLD λIHD

0 0.038 34 0.0271 0.0456
15 0.057 77 0.0563 0.0754
30 0.093 28 0.0887 0.1160
45 0.1121 0.1063 0.1360
60 0.098 24 0.0991 0.1173
75 0.067 88 0.0777 0.0796
90 0.052 69 0.0663 0.0612

in p 299 of his paper. Although it is apparent from all these figures that both equations (18)
and (25) yield acceptable approximations toλ1 in the range of values ofa in which each
is applicable, a more refined estimate ofλ1 could be constructed by adapting the methods



9104 W T Coffey et al

0.0 20.0 40.0 60.0 80.0
ψ

0.00

0.05

0.10

0.15

0.20

λ

λE

λLD

λIHD

λE

λLD

λIHD

Figure 4. Smallest non-vanishing eigenvalueλ as a function of relative orientationψ in degrees
for h = 0.2, a = 0.2, σ = 10. Here the LD formula is marginally better asaβ(V0 − V2) is
marginally less than unity as is apparent on inspection of table 8.

Table 8. Barrier heights forh = 0.2, a = 0.2, σ = 10.

ψ β(V0 − V1) β(V0 − V2) aβ(V0 − V2)

0 14.4 6.4 1.28
15 13.245 5.528 1.1056
30 11.883 4.991 0.9981
45 10.408 4.809 0.9619
60 8.9295 4.9906 0.9981
75 7.5595 5.5280 1.1050
90 6.4 6.4 1.28

of Matkowskyet al [19] or other techniques which attempt to provide asymptotic Kramers
formulae which are valid for all ranges of the friction for the Klein–Kramers problem (for
a review see B̈uttiker [25], Landauer [26] and Ḧanggiet al [23]). This is, however, likely
to be more difficult to carry out than in the Klein–Kramers problem.

6. Validity of asymptotic formulae as a function of the field angle

A feature common to all the results we have presented so far is the departure of the
asymptotes calculated from the IHD formula from the exact solution when the field angle
is very small so that the problem becomes almost axially symmetric. This is particularly
noticeable in the results presented in figure 5 and tables 9 and 10.

It is apparent from figure 5 that in the range 0–10◦ where one would expect that
the departure from axial symmetry is small, that the non-axially symmetric asymptotes
equations (18) and (25) depart significantly from the exact solutionλE . Such asymptotic
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Figure 5. Smallest non-vanishing eigenvalueλ as a function of relative orientationψ in degrees
for h = 0.2, a = 5.0, σ = 5. Here the IHD formula is a much better approximation than the
LD formula as is to be expected from table 10, except for small angles610◦ where spurious
resonant effects occur as discussed in the text.

Table 9. Values ofλE , λLD andλIHD for h = 0.2, a = 5.0, σ = 5.

ψ λE λLD λIHD

0 0.3131 0.1763 0.4058
15 0.3125 0.2398 0.3452
30 0.3072 0.2970 0.3277
45 0.2914 0.3429 0.3170
60 0.2657 0.3770 0.2938
75 0.2406 0.3990 0.2678
90 0.2300 0.4068 0.2563

Table 10. Barrier heights forh = 0.2, a = 05.0, σ = 5.

ψ β(V0 − V1) β(V0 − V2) aβ(V0 − V2)

0 7.2 3.2 16
15 6.6223 2.7640 13.82
30 5.9415 2.4953 12.476
45 5.2042 2.4048 12.024
60 4.4648 2.4953 12.476
75 3.7797 2.7640 13.82
90 3.2 3.2 16

behaviour is in essence a consequence of the linearization of the FPE about the minima
and the saddle points because for very small angles one is significantly outside the range
of validity of the Taylor series expansion of the potential given by equation (16). Here
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Table 11. Values ofλE andλIHD for h = 0.1, a = 10, σ = 10.

ψ λE λIHD

0 0.0383 0.0456
1 0.0384 0.0742
2 0.0384 0.0560
3 0.0385 0.0487
4 0.0386 0.0449
5 0.0388 0.0427
6 0.0389 0.0413
7 0.0392 0.0406
8 0.0394 0.0402
9 0.0398 0.0400

10 0.0401 0.0401
11 0.0404 0.0403
12 0.0408 0.0407
13 0.0412 0.0411
14 0.0416 0.0416
15 0.0420 0.0422
16 0.0424 0.0428
17 0.0429 0.0434
18 0.0433 0.0440
19 0.0438 0.0447
20 0.0442 0.0454

it appears that the Brown axially symmetric solution, equations (11) and (13), provides a
more accurate approximation to the exact solutionλE for small angles as is borne out by
the results shown in table 11. An interesting feature of figures 1 and 5 (tables 1, 2, 9 and
10) is that the asymptotic eigenvalue yielded by the IHD formula for small angles requires
different explanations in each case.

In case 1, the gyroscopically modified well is shallow and the other is deep, hence
we have rapid relaxation. In case 5, both wells are comparatively very deep; so that the
gyroscopic term must artificially create a spurious resonance between the two deep wells.
In each of the cases 1 and 5, we thus have artificial resonance for smallψ , for different
reasons, however, essentially because the harmonic oscillator approximation for each cell
is in general a poor one, for smallψ , particularly for case 5 (two deep wells) but also for
case 1 (one deep well).

The axially symmetric formula equation (13) gives 0.0456 which is, in general, a better
approximation than the IHD formula in the small angle region.

We finally remark that unlike the exact solution which is of course valid for all values of
the angleψ , it is impossible (again essentially due to the procedures involved in linearizing
the FPE about the minima and the saddle points) to smoothly join the axially and non-
axially symmetric asymptotic formulae, equation (11) and equations (18) and (25) as the
latter arise from a two variable FPE while the former arises from a single space variable FPE
which results from symmetry. This is in marked contrast to the Klein–Kramers problem [5]
where the one variable equation arises from the strong damping of the momentum and so
the IHD asymptote derived from the Klein–Kramers equation goes over smoothly into the
very high-damping asymptote. This mathematical constraint appears to be of little practical
consequence, however, as is apparent by inspection of table 11 that in the region 0–4◦ of
smallest departure from axial symmetry, the axially symmetric asymptote appears to give a
reasonable approximation toλE .
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7. Conclusions and experimental parameter values

The derivation of reliable approximate expressions for the relaxation timeτ of the magnetic
moment of fine particles for non-axially symmetric potentials which we have presented
is very important for the modelling of experiments. For example, in the most common
experiment used for characterizing fine particle assemblies, which is zero-field cooled
magnetization (MZFC) measurements, the temperatureTm of the maximum ofMZFC is
directly related to the blocking temperatureTB . TB is obtained from a transcendental
equation involving [2]τ . An analytical expression forTB is useful for determiningTm
and its variation with experimental parameters and can be derived only if an analytical
expression forτ is available.

We have seen that an asymptotic expression forτ can be derived by suitably adapting
the original Kramers approach [5, 26] to the calculation of escape rates to non-axially
symmetric problems in superparamagnetism. This was achieved by Brown [7, 17] essentially
by calculating the flow of representative points across a saddle point of the potential. His
general non-axially symmetric IHD result, equation (18), is in essence a particular practical
example of the results of Langer [22, 23, 26] for the multireaction coordinate Kramers
problem.

In using Brown’s results however, certain conditions must be fulfilled. First, for the
shallower of the two minima

E = β[V0− V2] � 1. (36)

Second, two expressions, equations (18) and (25), can be derived according to the value of
E(a) with

E(a) = aβ[V0− V2]. (37)

We have seen that the first expression, equation (18), corresponds to the high- or
intermediate-damping limit (IHD), that is forE(a)� 1 and the second to the low-damping
limit (LD), that is forE(a)� 1. However, despite the reasonable results of figures 3 and 4,
we do not have a formula which is rigorously valid in the crossover regionE(a) ≈ 1 where
the damping roughly lies between the very low-damping and aperiodic regimes. Before we
discuss this point at all however, it is important to ascertain ifE(a) ≈ 1 corresponds to an
actual case from an experimental point of view or if it is only a theoretical question! In view
of these considerations we remark that experiments can mainly investigate the relaxation
of the magnetic momentm of the particle when the relaxation timeτ is of the order of
magnitude of the measuring timeτm. If τ � τm, m appears to be blocked and the measured
properties correspond to the static properties of the particles. Ifτ � τm, on the other hand,
the average of the properties over the measuring time is measured and so the properties
do not depend onτ . Taking into account the values of the various parameters included
in the τ expression, the order of magnitude ofE varies from 5 (in the case of M̈ossbauer
spectroscopy where the measuring time is very smallτm ≈ 10−8 s to 30 (quasi-static
measurements where the measuring time is very largeτm ≈ 102 s). This means that the
high-barrier condition, equation (36), is always fulfilled so that the factor which determines
the choice of formulae is always thea value.

Very few data have been published ona values for fine particles. ForγFe2O3 particles
in a polymer,a ranges between 0.05 and 1 depending on the interparticle interaction strength
[27] for interacting Fe2γFe particles in an alumina matrix [28]a ≈ 1. On the other hand
for bulk materials,a ≈ 0.01 for Fe. Furthermore, lower values ofa are observed for
particular compounds such as yttrium garnet as well as higher values depending on the
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compound. We remark nevertheless that, in fine particles,a is a phenomenological constant
in the Gilbert equation relative to the whole particle including the defects inherent in the
particle surface. Thus, one may expect that the smaller the particle is, the more pronounced
will be the increase ofa with respect to its bulk value. Therefore, one may reasonably
expect that for big particles or particles with few defectsa ranges between 0.01 and 1,
while for smaller particles or particles with many defects,a ranges between 0.05 and 5. As
a consequence, we can see that the three cases are possible from an experimental point of
view, viz E(a) � 1 mainly for quasi-static measurements,E(a) � 1 mainly for shortτm
such as arise in M̈ossbauer spectroscopy andE(a) ≈ 1 for all experiments in whicha is
small. The fact thatE(a) ≈ 1 is likely to be of experimental significance indicates that the
present treatment should be extended (using one of the methods which have been devised
[19, 23, 25] to yield a formula for the escape rate in the Klein–Kramers problem which is
valid for all values of the friction), to yield a formula for the relaxation time which is valid
for all values ofa.

In conclusion, we remark that the very low-damping Kramers formula equation (25)
for magnetic relaxation has recently been rederived [29] in a very simple fashion using
the original Kramers energy diffusion method. The undamped motion is considered as the
rotation of a gyro in a uniform field (so that the harmonic oscillator equation applies) rather
than the librational motion in a well, as in the original Kramers problem. We also remark that
equations (18) and (25) yield fair approximations [30] to the experimental angular variation
of the prefactor of Co and BaFeCoTiO particles as well as providing a good description of
the behaviour of the prefactor in the non-axially symmetric problem of magnetic relaxation
in a cubic anisotropy potential [31].
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Note added in proof. Finally the IHD formula (equation (18)), although discussed in the context of aperiodic to
overdamped behaviour, will also provide a reasonable approximation to the inverse relaxation time even in the
underdamped case as long as [32] the criterion of applicability embodied in the equation (27) is fulfilled.
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